
 Exploring the Potential of Machine 
Learning in Space Exploration 

1 

   

 

  
 

 

 

  

 

 

 

 

 

 

 

  



Shaza Arif 

2 

© Centre for Aerospace & Security Studies 

2025 

All rights reserved. No part of this Publication may be reproduced, stored in a retrieval 

system or transmitted in any form or by any means, electronic, mechanical, photocopying, 

recording or otherwise, without prior permission of the Editor/Publisher. 

Opinions expressed are those of the author/s and do not necessarily reflect the views of the 

Centre. Complete responsibility for factual accuracy of the data presented and bibliographic 

citations lie entirely with the author/s. CASS has a strict zero tolerance plagiarism policy. 

 

 

 
President 

Air Marshal Javaid Ahmed (Retd) 

 

 
Edited by: 

Sarah Siddiq Aneel 

 

 

Layout 

Hira Mumtaz 

 

 

 

All correspondence pertaining to this publication should be addressed to CASS, 

Islamabad, through post or email at the following address: 

  



 Exploring the Potential of Machine 
Learning in Space Exploration 

3 

 

 

 

 

 

 

 

 

 

 

 

 

Working Paper 

 

 

Shaza Arif 

Research Associate 

 

 

 

 

  

Exploring the Potential of Machine 

Learning in Space Exploration 



Shaza Arif 

4 

  



 Exploring the Potential of Machine 
Learning in Space Exploration 

5 

TABLE OF CONTENTS 

Abstract ....................................................................................................... 1 

Introduction ................................................................................................ 2 

Machine Learning Applications in Space Exploration .................................. 4 

Selection of Machine Learning Models in Space Exploration ..................... 13 

Discussion: Challenges and Recommendations ......................................... 14 

Conclusion ................................................................................................. 19 

 

  



Shaza Arif 

6 

 

  



 Exploring the Potential of Machine 
Learning in Space Exploration 

1 

Abstract 

Space-based capabilities have become one of the central themes in the 

technological discourse. Rapid proliferation of these capabilities has increased 

the significance of space exploration. As various space agencies and private 

entities expedite their ingress towards space, Machine Learning (ML) is becoming 

more relevant to ensure efficiency, safety and mission success. This paper 

examines the interplay between ML and space exploration, focusing on its key 

applications across three levels: near-Earth, solar system, and interstellar. The 

findings of this paper indicate that ML has major implications across all three 

levels of space exploration. In near-Earth applications, ML facilitates data 

collection and analysis, autonomous navigation, and development of Robonauts. 

At the solar system level, it plays a crucial role in planetary exploration, space 

weather forecasting, space debris identification, and asteroid trajectory 

prediction. Similarly, at the interstellar level, ML contributes to exoplanet 

detection, analysis of diffuse interstellar bands, and advancements in interstellar 

travel. However, while ML-driven applications offer substantial benefits, their 

implementation is hindered by various challenges arising from the inherent 

complexity of the space domain, necessitating targeted solutions for optimal 

utilisation. 

Keywords: Machine Learning, Space Exploration, Near-Earth Applications, Solar 

System, Interstellar Level, Autonomous Navigation, Planetary Exploration, Space 

Weather Forecasting, Exoplanet Detection, Artificial Intelligence in Space. 
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Introduction  

The space industry is growing at a tremendous pace. Over the last thirty years, 

miniaturisation, enhanced sensor performance and advanced connectivity have led to 

numerous applications, unfolding new potentials and unprecedented advantages at a 

meteoric speed.1 Moreover,  the space economy is expected to reach USD 1.8 trillion 

by the year 2035.2 Amongst a comprehensive list of applications, key sectors range 

from earth observation, agriculture, communication, surveillance & reconnaissance, 

navigation, planetary sciences to the health sector.3 Given increasing employment of 

space-based applications, space exploration has become considerably important and 

over time, more complex. The increasing accessibility of space, growing frequency of 

missions, ambitious objectives, advancements in technology, and emergence of new 

actors have introduced new dimensions to space exploration.4 These developments 

necessitate the full integration of cross-cutting technologies to enhance exploration 

efforts and maximise benefits, especially as humanity continues to extend its reach 

beyond Earth’s gravitational pull.5 

The technological advancements in quantum computing, cyber, big data and Artificial 

Intelligence (AI) impact how we approach space exploration.6 Amongst these 

technologies, machine learning (ML) – a subset of AI stands as an important factor 

that has given rise to numerous expectations across different sectors.7  

                                                            

1  Antonio Carlo and Paola Breda, “Impact of Space Systems Capabilities and their Role as Critical 
Infrastructure,” International Journal of Critical Infrastructure Protection 45, (2024): 100680, 
https://www.sciencedirect.com/science/article/abs/pii/S1874548224000210?via%3Dihub. 

2  Jeremy Jurgens and Ryan Brukardt, Space: The $1.8 Trillion Opportunity for Global Economic 
Growth, report (Geneva: World Economic Forum, 2024), 9, 
https://www3.weforum.org/docs/WEF_Space_2024.pdf. 

3  International Space Exploration Coordination Group (ISECG), Benefits Stemming from Space 
Exploration, report (International Space Exploration Coordination Group, September, 2013), 2, 
https://www.nasa.gov/wp-content/uploads/2015/01/benefits-stemming-from-space-exploration-
2013-tagged.pdf. 

4 Francisco Del Canto Viterale, “Transitioning to a New Space Age in the 21st Century: A Systemic-
Level Approach,” Systems 11, no.5 (2023):232-270, https://www.mdpi.com/2079-
8954/11/5/232. 

5  Sisay Tadesse Arzo, Dimitrios Sikeridis, Michael Devetsikiotis, Fabrizio Granelli, Rafael Fierro and 
Mona Esmaeili, “Essential Technologies and Concepts for Massive Space Exploration: Challenges 
and Opportunities,” Transactions on Aerospace and Electronic Systems 59, no. 1 (2023): 3-29, 
https://ieeexplore.ieee.org/abstract/document/9761732. 

6  Antonio Carlo and Lucille Roux, “Emerging Technologies and Space,” (paper presented at 4949th 
International Conference, Prague, October 20-21, 2022). 

7  Koosha Sharifani and Mahyar Amini, “Machine Learning and Deep Learning: A Review of Methods 
and Applications,” World Information Technology and Engineering Journal 10, no.7 (2023): 
3897-3904. 

https://www.sciencedirect.com/science/article/abs/pii/S1874548224000210?via%3Dihub
https://www.mdpi.com/2079-8954/11/5/232
https://www.mdpi.com/2079-8954/11/5/232
https://ieeexplore.ieee.org/abstract/document/9761732
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ML is defined as ‘Machine learning (ML) is a branch of Artificial Intelligence (AI) and 

computer science that focuses on using data and algorithms to enable AI to imitate 

the way that humans learn, gradually improving its accuracy.’8  

The phenomenon has garnered substantial attention, driving technological 

advancements and enhancing efficiency across various domains.9 Its capabilities, 

particularly in processing and analysing vast datasets and making precise predictions, 

present substantial advantages for space exploration. As the field continues to evolve, 

ML is expected to play a pivotal role in fostering innovation, expanding the 

technological landscape, and unlocking new opportunities at the frontier of 

exploration.10 Notably, various forms of AI have been utilised in space applications 

over time.11 However, recent advancements in ML necessitate a focused examination 

of its interplay with space exploration, especially in light of emerging developments. 

This research paper examines the interplay between machine learning (ML) and space 

exploration, focusing on its applications to enhance space missions.  

Methodology 

The study follows qualitative research design, using secondary data collection 

methods. Sources include books, book chapters, journal articles, conference papers, 

websites, magazines, and opinion articles. Relevant journal articles were identified 

through databases such as Web of Science, Scopus, and Google Scholar, using 

keywords like ‘Space Exploration’, ‘Space Applications’, and ‘Machine Learning’, both 
individually and in combination. 

For the literature review, abstracts of 80 research articles were initially consulted, with 

57 selected for in-depth analysis. To ensure the study remains current and forward-

looking, the majority of the selected articles were published between 2022 and 2024. 

Thematic analysis was employed to analyse the data, using a coding tree to categorise 

and label key themes. Recurring ideas were grouped into broader categories and their 

                                                            

8  International Business Machines, “What is Machine Learning (ML)?”, 
https://www.ibm.com/topics/machine-learning [Accessed 22 July 2024]. 

9  Mohsen Soori, Behrooz Arezoo and Roza Dastres, “Artificial Intelligence, Machine Learning and 
Deep Learning in Advanced Robotics, A Review,” Cognitive Robotics 3 (2023): 54-70, 
https://www.sciencedirect.com/science/article/pii/S2667241323000113. 

10  Varun Shah, “Next-Generation Space Exploration: AI-Enhanced Autonomous Navigation 
Systems,” Journal Environmental Sciences and Technology 3, no.1 (2024): 47-64, 
https://zenodo.org/records/10779068. 

11  Manas Biswal, “A Short Review on Machine Learning in Space Science and Exploration,” 
Acceleron Aerospace Journal 1, no.4 (2023): 84-87, 
https://acceleron.org.in/index.php/aaj/article/view/AAJ.11.2106-2317. 

https://www.ibm.com/topics/machine-learning
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corresponding sub-themes. A key limitation of the study is that it does not investigate 

the technical intricacies of ML in space exploration. To maintain focus, it also does not 

provide a historical overview of ML’s application in space but instead adopts a forward-

looking perspective. 

 

Machine Learning Applications in Space Exploration  

There are several applications of ML in space exploration. The following section of the 

paper will shed light on the potential applications of ML in space exploration. The 

applications are studied in three categories or levels: 

1. Near-Earth 

2. Solar System 

3. Interstellar 

Figure 1: Coding Tree - ML in Space Exploration 

Source: Author’s own. 

Near-Earth  

The first category focuses on the applications that are relatively proximal to the Earth 

and typically within the orbits comprising satellites, International Space Station (ISS) 

and proximal spacecraft. 

ML in Space 

Exploration 
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Data Collection and Analysis  

In the vast realm of space exploration, effectively managing data has always been a 

considerable challenge.12 For instance, the ISS orbits the Earth at a speed of 28,000 

km per hour, capturing abundant amounts of data.13 The sheer volume of the gathered 

data necessitates an efficient mechanism and relevant tools that streamline the 

process. ML enhances space missions by filtering out irrelevant information and 

optimizing data quality through advanced surveying and analysis.14 In existing 

applications, convolutional neural networks (CNNs) process satellite imagery, 

uncovering hidden patterns and trends that might otherwise remain undetected by 

human observation.15 This capability not only provides critical insights into space but 

also has applications in Earth observation, benefiting sectors such as disaster 

management, climate monitoring, and agriculture. 

Furthermore, the application of reinforcement learning can optimise communication 

link efficiency by enhancing the quality and speed of data transmission from satellites 

or spacecraft. This improvement not only increases overall operational efficiency but 

also minimises the volume of unusable data, ensuring that only relevant and high-

quality information is transmitted for analysis. 16 The European satellite Phi-Sat-1 is a 

prominent example of ML techniques improving data transmission and analysis.17 

Furthermore, while data collection and analysis have been used extensively in near-

Earth applications, the technique is applicable to the other two levels as well. 

 

                                                            

12  Tina Salvage, “Data Governance in Space - Key Challenges and Opportunities,” Chief Data Officer 
Magazine, July 11, 2024, https://www.cdomagazine.tech/opinion-analysis/data-governance-in-
space-key-challenges-and-opportunities. 

13  Kennedy Space Centre, “The 20 Most Frequently Asked Questions about the International Space 
Station,” October 23, 2020, https://www.kennedyspacecenter.com/blog/the-20-most-frequently-
asked-questions-about-the-international-space-station. 

14  Biswal, “A Short Review on Machine Learning in Space Science and Exploration.” 
15  Pablo Miralles, Kathiravan Thangavel, Antonio Fulvio Scannapieco and Nitya Jagadam et al. “A 

Critical Review on the State-of-the-Art and Future Prospects of Machine Learning for Earth 
Observation Operations,” Advances in Space Research 71, no.12 (2023): 4959-4986, 
https://www.sciencedirect.com/science/article/abs/pii/S027311772300145X. 

16  Kevin Lange, Federico Fontana, Francesco Rossi and Mattia Varile et al., “Machine Learning in 
Space: Surveying the Robustness of On-board ML Models to Radiation,” (paper presented at 
University of Liechtenstein, Vadus, 2024). 

17  Arindam Bhattacharyya, Shvetha M. Nambiar, Ritwik Ojha, and Amogh Gyaneshwar et al., 
“Machine Learning and Deep Learning Powered Satellite Communications: Enabling 
Technologies, Applications, Open Challenges, and Future Research Directions,” International 
Journal of Satellites, Communication and Networking 41, no.6 (2023): 539-558, 
https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1482. 

https://www.sciencedirect.com/science/article/abs/pii/S027311772300145X
https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1482
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Autonomous Navigation 

Autonomous navigation of satellites has been a key aspect of research in space 

exploration.18 Vast distances in space, communication limitations, need for obstacle 

avoidance and precise landing indicates the importance of autonomous navigation in 

space.19 With the advent of Distributed Satellite Systems (DSS) - where multiple 

spacecraft operate collaboratively toward a common objective - the demand for 

autonomous navigation has grown exponentially. DSS encompasses various 

configurations, including satellite constellations, fractionated systems, federated and 

modular architectures, swarms, formation flying, and hybrid missions. As the 

deployment of DSS increases, ensuring greater autonomy in space missions has 

become a critical priority. ML techniques such as supervised learning, reinforcement 

learning, multi-agent reinforcement learning, and CNNs can enhance autonomy across 

various aspects of DSS operations. Key applications of these techniques include data 

processing, data analysis, collision avoidance, trajectory optimisation, and path 

planning, all of which are essential for improving the efficiency and reliability of 

autonomous space systems. 20 

Robonauts - International Space Station 

Space travel can be considerably challenging for human beings given the risks 

involved.21 Exposure to ionising radiation, microgravity, extreme weather, rapidly 

changing day-night cycles, and a harsh environment pose significant risks to an 

astronaut’s health.22 Robotic astronauts, commonly known as ‘Robonauts’ can play a 

role in this regard, assisting astronauts in completing tasks that are deemed 

dangerous.23 Such measures could help in expanding the research and development 

capacity of space agencies like the National Aeronautics and Space Administration 

(NASA). The robonaut also comes with advantages such as compact size, enhanced 

                                                            

18  Erdem Turan, Stefano Speretta and Eberhard Gill, “Autonomous Navigation for Deep Space Small 
Satellites: Scientific and Technological Advances,” Acta Astronautica 193, no.1 (2022): 56-74, 
https://www.sciencedirect.com/science/article/pii/S0094576521006652. 

19  Shah, "Next-Generation Space Exploration,” 3. 
20  Kathiravan Thangavel, Roberto Sabatini, Alessandro Gardi, Kavindu Ranasinghe et al., “Artificial 

Intelligence for Trusted Autonomous Satellite Operations,” Progress in Aerospace Sciences 144 
(2024): 100960, https://www.sciencedirect.com/science/article/pii/S0376042123000763.  

21  National Aeronautics and Space Administration,“5 Hazards of Human Spaceflight,” 
https://www.nasa.gov/hrp/hazards/ [Accessed 29 July 2024]. 

22  Editorial, “Space Missions Out of this World with AI,” Nature Machine Intelligence, March 23, 
2023, https://www.nature.com/articles/s42256-023-00643-3. 

23  Venkatesh Venkataramanan, Aashi Modi and Kashish Mistry, “AI and Robots Impact on Space 
Exploration,” Advances in Astronautics Science and Technology 7, no.1 (2024):1-9, 
https://link.springer.com/article/10.1007/s42423-023-00147-7. 

https://www.sciencedirect.com/science/article/pii/S0094576521006652
https://www.sciencedirect.com/science/article/pii/S0376042123000763
https://www.nasa.gov/hrp/hazards/#:~:text=To%20bring%20such%20a%20mission,and%20closed%20or%20hostile%20environments
https://link.springer.com/article/10.1007/s42423-023-00147-7


 Exploring the Potential of Machine 
Learning in Space Exploration 

7 

sensors, and high speeds.24 NASA’s Robonaut 2, launched in 2011, is an important 

example in this regard.25 The use of ML can improve productivity of robonauts by 

increasing their autonomy, enabling them to perform tasks outside the ISS. While 

currently, they are used in basic tasks onboard the International Space Station (ISS), 

in future, they can perform complex tasks such as exploring life on other planets, 

repairing satellites, and performing tasks outside the ISS.26 

Solar System  

The second category includes the solar system, which includes the Sun, its immediate 

planets, and other celestial bodies, all bound together by the Sun’s gravitational 
force.27  

Planetary Exploration  

Mars exploration has been a central focus of space research, with numerous missions 

dedicated to investigating the planet’s potential for sustaining life.28 Over the years, 

various efforts have been undertaken to analyse its surface and atmospheric 

conditions. Notably, for the past three years, AI has been used by the ‘Perseverance’ 
rover to study the mineral composition of Martian rocks, enhancing the efficiency and 

accuracy of geological analysis.29 The initiative is part of NASA’s ‘Mars Sample Return 

Program’ that aims to bring samples from the red planet for the first time.30 The 

Planetary Instrument for X-Ray Lithochemistry (PIXL) plays a crucial role in mapping 

the chemical composition of Martian rocks to determine whether past conditions were 

suitable for microbial life. ML enhances PIXL’s functionality in two key ways. 

First, ML enables precise positioning of the instrument when it approaches a rock 

target, ensuring optimal alignment for analysis. Once positioned, ML facilitates 

                                                            

24  National Aeronautics and Space Administration, “About Robonaut,” 
https://www.nasa.gov/robonaut2/what-is-a-robonaut/ [Accessed 24 July 2024].  

25  Ibid. 
26  Piyush Pant and Anand Singh Rajawat, “Study of AI and ML Based Technologies used in 

International Space Station,” Global Journal of Innovation and Emerging Technology 1, (2022): 
10-14, http://iet.adsrs.net/index.php/iet/article/view/3/15. 

27  National Aeronautics and Space Administration, “The Solar System,” 
https://science.nasa.gov/learn/basics-of-space-flight/chapter1-1/ [Accessed 25 July 2024]. 

28  National Aeronautics and Space Administration, “Mars”, https://www.nasa.gov/humans-in-
space/humans-to mars/ [Accessed 18 July 2024]. 

29  National Aeronautics and Space Administration, “Here’s How AI Is Changing NASA’s Mars Rover 
Science,” July 16, 2024, https://www.nasa.gov/missions/mars-2020-perseverance/perseverance-
rover/heres-how-ai-is-changing-nasas-mars-rover-science/ [Accessed 25 July 2024]. 

30  National Aeronautics and Space Administration, “Mars Sample Return,” 
https://science.nasa.gov/mission/mars-sample-return/ [Accessed 25 July 2024]. 

https://www.nasa.gov/robonaut2/what-is-a-robonaut/
http://iet.adsrs.net/index.php/iet/article/view/3/15
https://www.nasa.gov/humans-in-space/humans-to%20mars/#:~:text=Mars%20remains%20our%20horizon%20goal,exists%20beyond%20our%20home%20planet
https://www.nasa.gov/humans-in-space/humans-to%20mars/#:~:text=Mars%20remains%20our%20horizon%20goal,exists%20beyond%20our%20home%20planet
https://www.nasa.gov/missions/mars-2020-perseverance/perseverance-rover/heres-how-ai-is-changing-nasas-mars-rover-science/#:~:text=For%20almost%20three%20years%2C%20the,time%20analysis%20of%20rock%20composition
https://www.nasa.gov/missions/mars-2020-perseverance/perseverance-rover/heres-how-ai-is-changing-nasas-mars-rover-science/#:~:text=For%20almost%20three%20years%2C%20the,time%20analysis%20of%20rock%20composition
https://science.nasa.gov/mission/mars-sample-return/
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targeted scanning by directing PIXL’s X-ray beam to selected rock sections, 

systematically creating a grid of microscopic dots. Each dot contains valuable data 

about the rock’s chemical composition. Predicting which of the hundreds of X-ray zaps 

will reveal specific minerals is a complex challenge. However, ML optimises this 

process by halting further scanning once the desired mineral is identified. At this point, 

PIXL initiates a process known as ‘long dwell,’ allowing it to gather additional data on 

the identified mineral, thereby improving the efficiency and precision of planetary 

analysis.31 This capability is achieved through the use of previous datasets, where 

weight percentages are assigned to various compounds based on their significance. A 

predefined threshold is set for each composition of interest, triggering the long dwell 

process when the threshold is met. This marks a groundbreaking advancement, 

representing the first instance of autonomous decision-making by an exploration 

spacecraft through in-situ composition analysis on the surface of another planet.32 

Furthermore, research indicates that ML can greatly improve remote detection of cave 

entrances on Mars, a critical step in investigating potential biosignatures and past or 

present traces of life. By leveraging advanced pattern recognition and image 

processing techniques, ML can analyse planetary surface data to identify geological 

features that may provide shelter for microbial life, similar to cave systems on Earth.33 

Similarly, 2,300 miles away from ‘Perseverance’, the ‘Curiosity Rover’ has also been 

making use of ML in unique ways. The rover uses autonomous laser-zapping 

techniques on rocks subjected to their shape and colour.34 Self-navigation is a 

prominent feature of the rover.  

Hence, integration of supervised learning, computer vision, classification algorithms, 

and reinforcement learning significantly enhances Mars exploration. As ML continues 

to advance, its applications in planetary research are expected to expand further. 

While Mars garners more attention due to its proximity to Earth, ML-driven techniques 

are not limited to the red planet. The same methodologies can be adapted and applied 

                                                            

31  National Aeronautics and Space Administration, “Here’s How AI Is Changing NASA’s Mars Rover 
Science.” 

32  Peter R. Lawsona, Tanya V. Kizovskib, Michael Ticec and Benton C. Clark, “Adaptive Sampling 
with PIXL on the Mars Perseverance Rover,” (paper, ArXiv, 2024), 
https://arxiv.org/pdf/2405.14471. 

33  Thomas H. Watson and James U.L. Baldini, “Martian Cave Detection Via Machine Learning 
Coupled with Visible Light Imagery,” Icarus 411, (2024):115952, 
https://www.sciencedirect.com/science/article/pii/S0019103524000101. 

34  National Aeronautics and Space Administration, “Here’s How AI Is Changing NASA’s Mars Rover 
Science.” 

https://arxiv.org/pdf/2405.14471
https://www.sciencedirect.com/science/article/pii/S0019103524000101
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to the exploration of other planetary bodies, broadening the scope of extraterrestrial 

research and discovery. 

Space Weather  

Space weather refers to the activities on the Sun’s surface, creating a specific type of 

weather.35 This impact in magnetosphere, ionosphere and thermosphere can 

significantly impact the performance and reliability of space and ground-based 

technologies.36 The disruptive effects of space weather have been observed across 

multiple sectors, including satellites, aviation, communication, and navigation, often 

resulting in economic consequences.37 ML models, which map inputs to outputs, can 

uncover hidden patterns and underlying relationships that traditional methods often 

fail to detect.38 Furthermore, ML provides a more cost-effective approach to 

forecasting space weather compared to conventional techniques, such as ionospheric 

scintillation monitoring receivers (ISMRs), enhancing both efficiency and predictive 

accuracy.39 

The Echo State Network (ESN), an ML technique, was employed to develop a model 

capable of replicating complex space simulations. Through a sophisticated set of 

calculations, the model analysed the interaction between solar wind and Earth’s 
gravitational field. The experiment’s results demonstrated that ESN could generate 

real-time space weather predictions at significantly higher speeds than traditional 

methods. Furthermore, the model’s ability to incorporate new data enables it to run 

additional simulations, continuously improving the accuracy of future forecasts.40 

 

                                                            

35  NASA Science Space Place, “What is Space Weather?” February 14, 2024, 
https://spaceplace.nasa.gov/spaceweather/en/. 

36  Sara-Lena Brännström, “Umeå has been Chosen to Host the European Space Weather Week in 
2025”, Umeå University, April 24, 2024, 
https://www.umu.se/en/news/umea-has-been-chosen-to-host-the-european-space-weather-
week-in-2025_11929428. 

37  Randa Natras and Michael Schmidt, “Machine Learning Model Development for Space Weather 
Forecasting in the Ionosphere,” (paper presented at 1st Workshop on Complex Data Challenges 
in Earth Observation, November 1, 2021, Virtual Event, QLD, Australia). 

38  Enrico Camporeale, Simon Wing and Jay R Johnson, Machine Learning Techniques for Space 
Weather (Amsterdam: Elsevier, 2018). 

39  Tech Xplore, “Predicting Space Weather: Machine learning Enhances GNSS Signal Stability,” June 
19, 2024, https://techxplore.com/news/2024-06-space-weather-machine-gnss-stability.html. 

40  Ryuho Kataoka, Aoi Nakamizo, Shinya Nakano and Shigeru Fujita, “Machine Learning-Based 
Emulator for the Physics-Based Simulation of Auroral Current System,” Space Weather 22, no.1 
(2024): 1-11, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023SW003720. 

https://www.umu.se/en/news/umea-has-been-chosen-to-host-the-european-space-weather-week-in-2025_11929428
https://www.umu.se/en/news/umea-has-been-chosen-to-host-the-european-space-weather-week-in-2025_11929428
https://techxplore.com/news/2024-06-space-weather-machine-gnss-stability.html
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023SW003720
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Dentification of Space Debris 

Since the launch of the first satellite, the number of objects in space has increased 

due to rapid technological advancements and corresponding expansion of spacecraft 

deployments. Currently, approximately 36,000 objects larger than 10 centimetres are 

present in Earth’s orbit, alongside millions of smaller debris fragments, posing 

challenges for space operations and sustainability.41 In order to avoid dangerous 

collisions and formation of more orbits as a result of the collisions, it is important to 

determine the orbits of the concerned objects. ML can be applied for orbit estimation 

via a combination of three approaches including orbit determination, orbit prediction 

and establishing thermospheric density mass models.42 The enhanced accuracy of 

these factors can improve classical algorithms and lead to increased safety for space 

missions.43 Likewise, ML techniques such as deep reinforcement learning (DRL) can 

be applied to collision probability assessment between spacecraft and space debris, 

optimisation of energy consumption, and management of various operational 

constraints.44 Furthermore, ML can also play an important role in estimation of debris 

in its reentry phase.45 ML techniques such as ‘Decision Tree’ have proven to be 

considerably more accurate in predicting the velocity, latitude and longitude of the 

points where the spacecraft debris is expected to land as compared to other models. 

Furthermore, ML-driven approaches enable results to be obtained in significantly 

shorter timeframes, enhancing the real-time responsiveness of safety warnings and 

improving the overall effectiveness of collision avoidance measures.46 

Prediction of Asteroids   

Potentially Hazardous Asteroids (PHAs), particularly those that intersect the Earth’s 
orbit, referred to as near-Earth Asteroids (NEAs) can have catastrophic impact, posing 

a considerable risk to human civilisation. Hence, it is crucial to monitor them in an 

                                                            

41  Douglas Gorman, “ESA Report Shows Unsustainable Levels of Orbital Debris,” Payload, July 23, 
2024, https://payloadspace.com/esa-report-shows-unsustainable-levels-of-orbital-debris/. 

42  Francisco Caldas and Cláudia Soares, “Machine Learning in Orbit Estimation: A Survey,” Acta 
Astronautica 220, (2024); 97-107, 
https://www.sciencedirect.com/science/article/pii/S0094576524001917. 

43  Ibid. 
44  Chaoxu Mu, Shuo Liu, Ming Lu, Zhaoyang Liu et al., “Autonomous Spacecraft Collision Avoidance 

with a Variable Number of Space Debris Based on Safe Reinforcement Learning,” Aerospace 
Science and Technology 149, (2024):109131, 
https://www.sciencedirect.com/science/article/abs/pii/S1270963824002645. 

45  Hu Gaoa, Zhihui Lib, Depeng Danga, Jingfan Yanga et al., “Reentry Risk and Safety Assessment 
of Spacecraft Debris Based on Machine Learning,” (paper, arXiv, 2023), 

  https://arxiv.org/pdf/2302.10530 
46  Ibid. 

https://payloadspace.com/esa-report-shows-unsustainable-levels-of-orbital-debris/#:~:text=Of%20the%2035%2C000%20objects%20in,debris%20larger%20than%201%20cm
https://www.sciencedirect.com/science/article/abs/pii/S1270963824002645
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effective manner. Regression Trees can play an effective role in the categorisation of 

asteroids according to their level of threat.47 Moreover, while ML techniques inducing 

Logistic Regression and Random Forest Classifiers have been used over time, there is 

a need to seek more innovative measures using ML to monitor asteroids.48 

Interstellar  

The third category is the interstellar level, referring to the region between the Sun’s 
heliosphere and the astrospheres of other stars. ML plays a crucial role in advancing 

exploration within this vast and largely uncharted domain.49 Key areas where ML can 

be applied in interstellar exploration include: 

Study of Diffuse Interstellar Bands (DIBs) 

Diffuse Interstellar Bands (DIBs) refer to observation features, existing in the optical 

and near-infrared spectra of stars, as their light passes the interstellar medium.50 The 

study of DIBs remains a key research area in astronomy.51 ML techniques such as 

random forest models can potentially allow better understanding of DIBs, usually 

impacted by interstellar dust and gas.52 Further research and advancements in the 

study of DIBs can provide critical insights regarding different dynamics of the 

interstellar medium by offering insights regarding the composition and processes 

involved in shaping the universe. 

 

 

 

                                                            

47  Seyed Matin Malakouti, Mohammad Bagher Menhaj and Amir Abolfazl Suratgar, “Machine 
Learning Techniques for Classifying Dangerous Asteroids,” MethodsX 11, (2023): 102337, 
https://www.sciencedirect.com/science/article/pii/S2215016123003345. 

48  Priya Pareshbhai Bhagwakar, Chirag Suryakant Thaker and Hetal A. Joshiara, “Review of 
Quantum Algorithms for Prediction of Hazardous Asteroids,” Computing and Artificial Intelligence 
2, no.1 (2024):1-9, https://ojs.acad-pub.com/index.php/CAI/article/view/1141/798. 

49  “10 Things: Going Interstellar,” NASA Science, July 26, 2022, https://science.nasa.gov/solar-
system/10-things-going-interstellar/. 

50  Mathias Schultheis, He Zhao, Tomaz Zwitter, Bailer-Jones et al., “Gaia Focused Product Release: 
Spatial Distribution of Two Diffuse Interstellar Bands,” Astronomy & Astrophysics 680 (2023):1-
33, https://www.aanda.org/articles/aa/abs/2023/12/aa47103-23/aa47103-23.html. 

51  Martin A. Cordiner, “Diffuse Interstellar Bands,” in Muriel Gargaud, William Irvine, Ricardo Amils, 
Philippe Claeys et al., Encyclopedia of Astrobiology (Berlin, Heidelberg: Springer). 

52  He Zhao, Mathias Schultheis, Caixia Qu and Tomaz Zwitter, “Diffuse Interstellar Bands in Gaia 
DR3 RVS Spectra-New Measurements Based on Machine Learning,” Astronomy & Astrophysics 
683 (2024): 1-22, https://www.aanda.org/articles/aa/full_html/2024/03/aa48671-23/aa48671-
23.html. 

https://www.sciencedirect.com/science/article/pii/S2215016123003345
https://ojs.acad-pub.com/index.php/CAI/article/view/1141/798
https://science.nasa.gov/solar-system/10-things-going-interstellar/
https://science.nasa.gov/solar-system/10-things-going-interstellar/
https://www.aanda.org/articles/aa/abs/2023/12/aa47103-23/aa47103-23.html
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Exoplanet Detection 

Exoplanets refer to those planets that lie beyond the solar system. The process of 

exoplanet detection is a remarkably challenging task.53 ML can also be employed for 

exoplanet detection. An ML approach called ‘Machine Learning for Cross-correlation 

Spectroscopy’ (MLCCS) can potentially improve the process of exoplanet detection. 

Tested on simulated data, the use of neural networks, MLCCS was able to detect 26 

times more planets as compared to the traditional signal-to-noise ratio approach. 

Furthermore, the use of advanced convolutional neural networks increases the rate to 

77 times. There is also a remarkable increase in the sensitivity of detection, from 0.7 

percent to 55.5 percent. 54 

Interstellar Missions  

Once seen as a fictional concept, the hopes around interstellar concept are likely to 

increase in future with the help of ML.55 The huge distances involved in interstellar 

journeys require efficient and autonomous spacecraft that are able to take critical 

decisions without human involvement. A study proposes that given the general 

assumption that computing power per mass is still increasing by a figure of 20.5 in 

the time frame of 2050 to 2090; the payload mass of the spacecraft is likely to 

decrease to a level that can be transported for interstellar travel by the year 2050. 

The size of such a spacecraft will remain comparable with the Daedalus Probe, the 

initial conceptual model for interstellar travel developed in the 1970s. The paper 

further forecasts that with computing refinements, even modest payloads weighing 1 

kg can be a possibility.56 Although interstellar travel remains a futuristic concept, it is 

likely that AI systems could assist in planning trajectories, allocating resources and 

predicting the risks involved. 

                                                            

53  Michelle L. Hill, Kimberly Bott, Paul A. Dalba, Tara Fetherolf et al., “A Catalog of Habitable Zone 
Exoplanets,” The Astronomical Journal 165, no.2 (2023):1-16, 
https://iopscience.iop.org/article/10.3847/1538-3881/aca1c0/meta. 

54  Emily O. Garvin, Markus J. Bonse,  Jean Hayoz, Gabriele Cugno et al., “Machine Learning for 
Exoplanet Detection in High-Contrast Spectroscopy,” Astronomy & Astrophysics 2 (2024): 1-27, 
https://arxiv.org/pdf/2405.13469. 

55  James Bird, Linda Petzold, Philip Lubin, and Julia Deacon, “Advances in Deep Space Exploration 
via Simulators & Deep Learning,” New Astronomy 84 (2021): 101517, 
https://www.sciencedirect.com/science/article/abs/pii/S1384107620302219. 

56  Andreas M. Hein and Stephen Baxter, “Artificial Intelligence for Interstellar Travel,” Journal of 
the British Interplanetary Society 72, no.4 (April 2019): 125-143, https://www.bis-
space.com/membership/jbis/2019/JBIS-v72-no04-April-2019-d94kwe.pdf. 

https://iopscience.iop.org/article/10.3847/1538-3881/aca1c0/meta
https://www.sciencedirect.com/science/article/abs/pii/S1384107620302219
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Selection of Machine Learning Models in Space Exploration 

Before moving to the discussion section, it is essential to examine the selection and 

application of different ML models. ML techniques can be broadly categorised into 

supervised learning, semi-supervised learning, unsupervised learning, and 

reinforcement learning, each offering distinct advantages and challenges. In 

supervised ML, labelled data is initially fed into the system, allowing the model to learn 

from predefined patterns.57  Over time, the system develops the capability to classify 

and label new data independently, improving its accuracy and efficiency in various 

applications.58 In unsupervised ML, systems rely on unlabelled data, identifying 

patterns and structures independently during subsequent processing. Instead of 

predefined labels, the model detects hidden correlations, making it particularly useful 

for exploratory data analysis. Semi-supervised ML combines elements of both 

supervised and unsupervised learning, using a mix of labelled and unlabelled data. 

This approach offers the limited availability of labelled datasets while improving model 

accuracy through autonomous pattern recognition. Finally, in reinforcement learning, 

systems learn through a reward and penalty mechanism, continuously optimising their 

actions based on feedback. This technique is particularly valuable for autonomous 

decision-making in space applications, such as robotic navigation and adaptive mission 

planning.59   

In space exploration, the selection of the kind of ML would remain dependent on the 

nature of mission. In this context, missions that deal with readily available data sets 

would be best met by using supervised ML such as prediction of space weather or 

classification of minerals. Likewise, for exploratory missions – where already available 

datasets are scarce - would be met more optimally with unsupervised ML – for example 

identification of space debris and interstellar medium analysis. Similarly, interplanetary 

missions could employ semi-supervised ML, combining both label and unlabelled data 

sets. Lastly, autonomous decision-making in space exploration could be a potential 

                                                            

57  Iqbal H. Sarker, “Machine Learning: Algorithms, Real World Applications and Research 
Directions,” SN Computer Science 2:160, (2021), 
https://link.springer.com/content/pdf/10.1007/s42979-021-00592-x.pdf. 

58  Shaza Arif, “Adversarial Attacks on Machine Learning – An Appraisal,”(paper, Centre for 
Aerospace & Security Studies, Islamabad, 2022), https://casstt.com/adversarial-attacks-on-
machine-learning-an-appraisal/. 

59  Ibid. 
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area where reinforcement learning could play its part. Hence, the exact requirement 

of the mission would decide the specific preference vis-à-vis selection of the ML model.  

 

Discussion: Challenges and Recommendations 

The findings of this study highlight the significant potential of ML in advancing space 

exploration across all three levels examined. Near-Earth applications are particularly 

impactful, enhancing data analysis, autonomous navigation, and robotic capabilities. 

ML’s integration into space exploration is poised to play a crucial role in future missions 

beyond the solar system, offering valuable insights at the interstellar level. While ML 

holds relevance across all three domains, its applications are most prevalent in near-

Earth exploration, where real-time data availability enables more immediate and 

practical implementation.  

The research reveals that various ML techniques have been employed to enhance 

space applications, with data processing and analysis emerging as the most prevalent 

across all three levels of exploration. Among the commonly used ML methods, 

supervised learning, decision trees, random forests, regression, and feature analysis 

have consistently appeared across different space missions. Given their widespread 

application, these techniques are expected to play an increasingly important role in 

shaping the future of space exploration. 

While extensive literature exists on the applications of ML in space exploration, several 

challenges remain that require critical attention. These challenges primarily stem from 

the extreme and dynamic nature of space, particularly in terms of temperature 

fluctuations and radiation exposure. Space missions operate in highly volatile 

environments, where solar radiation, galactic cosmic rays, and the Van Allen belt pose 

major risks to ML models. 

Radiation can directly interact with ML systems, leading to bit flips that may alter or 

damage their functionality. Exposure to highly charged particles can result in single-

event upsets (SEUs), a phenomenon where radiation-induced disturbances cause 

unintended status flips in electronic devices, potentially compromising mission-critical 

operations. Addressing these vulnerabilities is essential for ensuring the reliability and 
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resilience of ML-driven space technologies.60 Such scenarios have the potential to 

impact hardware longevity and result in disruption of sensitive electronic components. 

Furthermore, there is an equal probability that performance of the ML models trained 

on Earth could be impaired in extreme environment and microgravity conditions. 

Radiation can also degrade the quality of available data, affecting critical aspects such 

as photographic clarity, which in turn impacts the accuracy of analysis and decision-

making processes. This challenge is further aggravated by the militarisation of space 

technology, as smaller and more compact systems tend to have lower radiation 

tolerance, making them more vulnerable to damage. Given these constraints, ensuring 

the hardware resilience of ML-driven systems must be a priority to enhance their 

reliability and functionality in extreme space environments. 

Similarly, while technological advancements are driving various space applications, 

their current capabilities may not yet align with the ambitious goals of human space 

exploration. For example, although ML can support colonisation efforts, achieving this 

objective would require the development of self-replicating space equipment to sustain 

long-term extraterrestrial settlements. Given the current state of space technology, 

such advancements remain a long-term endeavour, requiring advanced progress 

before they become feasible.  

Interstellar applications also face challenges due to the inherent complexity and vast 

distances involved. While literature suggests that increasing computing power could 

lower spacecraft launch costs, interstellar travel depends on more than just 

computational advancements. It requires simultaneous progress in materials science 

and propulsion systems to enable ML breakthroughs in deep-space missions. Although 

computing power has advanced considerably and is expected to see further 

breakthroughs, corresponding progress in materials and propulsion technologies 

remains essential for realising ML-driven interstellar exploration. 

Another major challenge is the collection and processing of vast datasets from space. 

Imbalanced datasets, where rare but highly consequential space weather events occur 

infrequently, can lead to biases in algorithmic learning, skewing predictive models. 

                                                            

60  Sari Katz, Uriel Goldvais and Colin Price, “The Connection Between Space Weather and Single 
Event Upsets in Polar Low Earth Orbit Satellites,” Advances in Space Research 10, no.67 (2021): 
3237-3249, https://www.sciencedirect.com/science/article/abs/pii/S0273117721001204. 

https://www.sciencedirect.com/science/article/abs/pii/S0273117721001204
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The complex and dynamic interactions between the Earth and the Sun, which remain 

only partially understood, further complicate accurate space weather forecasting. 

Other constraints arise from data collection limitations, including variable time scales, 

inconsistent spatial coverage, and an uneven distribution of GNSS receivers, 

particularly in remote regions such as the oceans and the Southern Hemisphere, which 

contribute to less accurate predictions for these areas. Moreover, the risk of inaccurate 

information remains a persistent challenge. For example, while ML applications in 

detecting cave entrances on Mars are being explored, current results have shown 

notable inaccuracies, underscoring the need for further refinement of these models. 

Current limitations indicate that ML applications will continue to advance most rapidly 

in near-Earth exploration, where real-time data availability and technological maturity 

provide a solid foundation for innovation. However, solar system and interstellar 

applications must overcome sizeable technical and operational barriers before ML can 

be effectively deployed on a broader scale. Nonetheless, ongoing advancements and 

research initiatives suggest that major breakthroughs in space exploration are likely 

in the middle and later decades of the 21st Century, paving the way for more 

sophisticated and autonomous deep-space missions. 

Lastly,  the synergy between ML and other emerging technologies could also impact 

future space applications. Merging the power of quantum mechanics with ML can 

provide an exponentially faster speed as compared to classical computers.61 Such 

synergy can optimise flight trajectories and process data more efficiently. Likewise, 

the combination of ML and nanotechnology can also provide innovative measures to 

address modern-day engineering challenges.62 In space applications, integration of 

nanotechnology with ML can offer advanced solutions vis-à-vis small, lightweight 

spacecraft such as Cubesats or nanosatellites and advanced capabilities such as self-

replication and advanced propulsion systems. Hence, in the future increasing 

integration of ML with emerging technologies could fuel advancements in space 

exploration. 

                                                            

61     Jun Qi, Chao-Han Huck Yan, Samuel Yen-Chi Chen and Pin-Yu Chen, “Quantum Machine 
Learning: An Interplay Between Quantum Computing and Machine Learning,” (paper, 
arXiv,2024), https://arxiv.org/pdf/2411.09403. 

62     Arnav Tripathy, Akshata Patne and Subhra Mohapatra, “Convergence of Nanotechnology and 
Machine Learning: The State of the Art, Challenges, and Perspectives,” International Journal of 
Molecular Sciences 25, no.2 (2024):12368, https://www.mdpi.com/1422-0067/25/22/12368. 
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Hence, a targeted and strategic approach is essential for maximising the potential of 

machine learning (ML) in space exploration. While the path forward is broad, certain 

key areas must be prioritised to ensure effective implementation. Based on the 

findings of this paper, the following key directions can help guide the future of ML in 

space exploration (Figure II), as analysed using NVIVO 11: 

Figure II: Way Forward 

 

Source: Authors own using NVIVO 11. 

Recommendations 

Strengthening ML Applications in Space Exploration 

• While efforts should continue to be invested in near-Earth applications, more 

research and pilot testing of simulated data are required to strengthen distant 

ML applications in space exploration. 

• Given the expanding scope of space exploration, interdisciplinary research should 

be prioritised into future research vis-à-vis ML and related subjects, including 

astrophysics, planetary science, astrobiology, chemical composition and geology, 

to make better use of ML in space exploration.  

• Realistic goals need to be set with pragmatic timelines to streamline the process 

of ML integration in space exploration. 
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Data Collection, Processing and Adaptability 

• Data collection and processing have emerged as a prevalent theme across all 

three levels, suggesting its increasing importance and the need for continuous 

improvement in ML techniques employed in the process.  

• Balanced data sets, improved sensors, and adequately distributed GNSS servers 

should be ensured to improve data collection methods. 

• There is a need to develop ML models that can handle data in different time 

variations and at different geographical locations. The adaptability feature should 

be ensured in ML models to self-correct the errors that result out of extreme 

environment / radiation exposure. 

Hardware Resilience and Space Environment 

• Given the extreme environment in space, there is a need to develop hardware 

and ML models that are resilient to the space environment and capable of 

withstanding the intense temperatures. 

• There is a need to explore techniques that can lead to the development of 

hardware-optimised algorithms that can overcome bitflips and the impact of 

radiation. Therefore, the choice of material and shielding techniques needs to be 

improved to protect the hardware and spacecraft.  

• Material science innovations should be promoted to develop resilience against 

space environments. In addition, design strategies should be explored to 

incorporate fault-tolerant systems. 

Technological Advancements and System Integration 

• Technological advancements in computing power need to be synchronised 

proportionately with material and propulsion systems. 

• Nanotechnology and self-replication need to be explored to power ML techniques 

in space exploration. 

Standardisation and Safety Protocols 

• To ensure the safety, reliability, and durability of space equipment, adherence to 

international standards such as NASA EEE-INST-002, NASA-STD-8739.8A, NASA-
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STD-5019, ESA’s ECSS-Q-ST-30-02C, ECSS-Q-ST-60-15C, ECSS-E-ST-10C, MIL-

STD-883, and MIL-STD-1540 should be prioritised.  

• Development and implementation of enhanced testing protocols that 

complement these existing standards are also essential for improving hardware 

performance and resilience in extreme space environments. 

 

Conclusion  

Space exploration presents a compelling domain for scholarly inquiry, given its rapid 

advancements and expanding significance. The evolution of space-based technologies 

and applications has led to an exponential increase in global reliance on them. As 

these applications continue to expand, the integration of machine learning (ML) offers 

substantial opportunities for enhancement. Similar to its transformative impact across 

various sectors, ML holds significant potential to advance space exploration through 

improved data analysis, automation, and decision-making capabilities. ML techniques 

such as deep learning, supervised learning, regress trees, random forests, and 

regression can power space exploration across near-Earth observation, solar system, 

and interstellar levels. In near-Earth applications, ML can enhance data collection and 

analysis, facilitate autonomous satellite navigation, and improve the efficiency of 

robotic astronauts. Similarly, within the solar system, ML can support planetary 

exploration, space weather forecasting, space debris identification, and asteroid 

trajectory prediction. At the interstellar level, ML plays a critical role in exoplanet 

detection, the analysis of diffuse interstellar bands, and advancement of interstellar 

missions, demonstrating its broad applicability across multiple domains of space 

exploration. While ML offers significant advantages for space exploration, several 

challenges hinder its optimal implementation. Factors such as extreme temperatures, 

radiation exposure, imbalanced datasets, and varying time scales for data collection 

pose substantial obstacles. Addressing these challenges requires proactive measures 

and targeted solutions to enhance ML’s effectiveness in space applications. Therefore, 
prioritising this area is essential for relevant stakeholders to maximise the potential of 

ML in advancing space exploration. 
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